

Volume 2, Issue4,October- 2011 Available Online at www.ijppronline.com International Journal Of Pharma Professional's Research Research Article

PREPARATION OF CHITOSAN NANOPARTICLES AND ENCAPSULATED DEXAMETHASONE SODIUM PHOSPHATE Biresh K Sarkar *,Ramvikas sunkavalli,Jakhad suresh, Dilkhush Jain, 1. Sri Balaji College of Pharmacy, Jaipur

ISSN NO:0976-6723

Abstract

Chitosan based nanoparticles have a lot of attention upon their biological properties such as biodegradability, biocompatibility and bioadhesivity. The aim of the present investigation was to describe the synthesis and characterization of novel biodegradable nanoparticles based on chitosan for encapsulation of dexamethasone sodium phosphate. To achieve this objective, ionic gelation method were used. Drug containing nanoparticles were prepared with different amounts of drug. The mean size and size distribution of nanoparticles were measured by dynamic laser light scattering. The mean particle size, varied in the range of 250-350 nm. Values of loading capacity and loading efficiency varied between 33.7%-72.2% and 44.5%-76.0% for prepared nanoparticles. **Keywords:** Dexamethasone; Chitosan; Ionic gelation; Nanoparticles.

Introduction

The hydrophilic nanoparticles have received considerable attention to deliver therapeutic peptide, protein, antigen, oligonucleotide and genes by intravenous, oral, and mucosal administration information has [1]. The emphasized the importance of size, and revealed the advantages of nanoparticles over the microspheres [2]. It has bean observed that the number of nanoparticles that cross the epithelium is greater than the number of Chitosan is a biodegradable, microsphers. biocompatible and bioadhesive polysaccharide. It has been shown that chitosan is non-toxic and soft tissue compatible in a range of toxicity tests [3]. It has been widely used in pharmaceutical research and in industry as a carrier for drug delivery and as biomedical material [4]. Chitosan was selected for nanoparticles because of its recognized mucoadhesivity and ability to enhance the penetration of large molecules across mucosal surface [5].

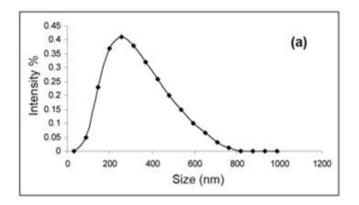
Correspondence Address: Biresh Kumar Sarkar Ph.D Research Scholar Sri Balaji College of Pharmacy, Jaipur Rajasthan, India Phone no: +91-9602859880 E-mail- bireshsarkar@gmail.com

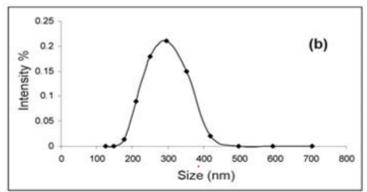
Chitosan nanoparticles are obtained by the process of ionotropic gelation based on the intraction between the negative groups of sodium tripolyphosphate (TPP) and the positively charged amino groups of chitosan. This process has been used to prepare CS nanoparticles for the delivery of peptides and proteins including insulin [6] and cyclosporine [7]. To our knowledge, there have been no reports on the preparation of chitosan nanoparticles containing dexamethasone sodium phosphate (DSP). Therefore, the aim of this work was to encapsulate appreciable quantities of DSP in chitosan nanoparticles made by ionotropic gelation with TPP.

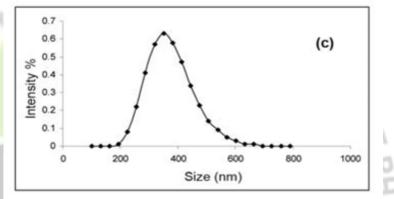
Figure 1. Morphology of chitosan nanoparticles

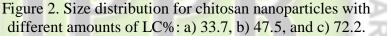
Materials and methods

Materials


Chitosan with a molecular weight of 200 KD and tripolyphosphate of sodium (TPP) were obtained from University Research Lab of Chemical Technology, University of Calcutta. Dexamethasone sodium phosphate (DSP) was supplied by Cadila, Ahemedabad.


Preparation of chitosan nanoparticles


Chitosan nanoparticles were prepared according to ionotropic gelation process [8]. the Blank nanoparticles were obtained upon the addition of a TPP aqueous solution (1 mg/ml) to a chitosan solution (2 mg/ml) stirred at room temperature (rate of 400 rpm). The formation of nanoparticles was a result of the interaction between the negative groups of TPP and the positively charged amino groups of chitosan. The ratio of chitosan/TPP was established according to the preliminary studies. DSP loaded nanoparticles were obtained according to the same procedure and the ratio of chitosan/TPP remained unchanged. Variable amounts of DSP were incorporated to the chitosan solution prior to the formation of nanoparticles in order to investigate the effect of initial DSP concentration on the nanoparticle characteristics and *in vitro* release profiles. Nanoparticles were collected by centrifugation at 10000 rpm for 40 min. and supernatant were discarded.


Characterization of the nanoparticles

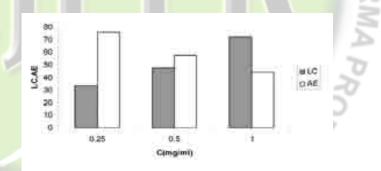

Measurement of physical size and polydispersity (size distribution) of DSP containing nanoparticles, were performed using dynamic laser light scattering (Sem- 633).

Figure 3. Values of LC and LE based on initial drug Concentration

Determination of DSP loading capacity and efficiency of nanoparticles

Loading efficiency and loading capacity of nanoparticles with different formation were determind by ultracentrifugation of samples at 30000×g and 10 °C for 30 min. The amount of free DSP was determined in clear supernatant by UV spectrophotometry at 243 nm using supernatant of non-loaded nanoparticles as basic correction. The DSP loading capacity (LC) of nanoparticles and

DSP loading efficiency (LE) of the process were calculated from Equations 1 and 2 indicated below:

Conclusion

LC=(A-B)/C×100 Equation (1)

 $LE=(A-B)/A \times 100$ Equation (2)

Where, "A" is the total amount of DSP; "B" is the free amount of DSP; "C" is the nanoparticles weight.

Results and discussion

Physicochemical characterization of nanoparticles:-

Spherical nanoparticles were formed spontaneously upon the incorporation of TPP solution to the chitosan solution under magnetic stirring as observed by SEM (Figure 1). The particle diameter (z-average) ranged from approximately 256-350 nm as seen in Figure 2. It is noteworthy that the hydrodynamic diameter of the particles measured by light scattering is higher than the size estimated from microscopy particularly because of the high swelling capacity of chitosan nanoparticles. It indicates that by increasing the DSP concentration, the size of nanoparticles increased. Variation of LC and LE vs the initial concentration of drug in polymer solution is shown in Figure 3. The formulation with the initial DSP concentration of 0.75 mg/ml provided the highest loading capacity (72.2%). However, regarding the particle size and LC%, larger particles were observed in higher association cases. By increasing drug loading, LC increased but LE decreased. Decreased LE with increasing drug content in the initial mixture of polymer and drug is due to the increased chemical potential of drug for diffusion into the external solution. Increased LC with increasing drug content is due to the increased ratio of drug to carrier in the mixture of polymer and drug.

Corticosteroid containing chitosan nanoparticles were efficiently produced via ionic gelation method. Particle size of nanoparticles was in the range of 250-350 nm. Because of the safety of the preparation method, prepared naoparticles can be use as suitable drug carriers in aphta treatment in the form of mucoadhesive.

References

1). Janes KA, Calvo P, Alonso MJ. Polysaccharide colloidal particles as delivery systems for macromolecules. Adv Drug Delivery Rev 2001; 47: 83-97.

2). Meclean S, Processer E, O'Malley D, Clark N, Ramtoola Z, Brayden D. Binding and uptake of biodegradable polylactide micro and nanoparticles in intestinal epithelia. Eur J Pharm Sci 1998; 6: 153-63.

3). Aspden TJ, Mason JD, Jones NS. Chitosan as a nasal delivery system: The effect of chitosan solutions on in vitro and in vivo mucociliary transport rates in human turbinates and volunteers. J Pharm Sci 1997; 86: 509-13.

4). Mao HQ, Troung-le VL, Janes KA, Roy K, Wang Y, August JT, Leong KW. Chitosan-DNA nanoparticles as gene carriers: Synthesis, characterization and transfection efficiency. J Control Release 2001; 70: 399-421.

5). Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15: 1326-31.

6). Fernandez-Urrusuno R, Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Enhancement of nasal absorbtion of insulin using chitosan nanoparticles. Pharm Res 1999; 16: 1576-81.

7). DeCampos AM, Alonso MJ. Chitosan nanoparticles: Anew vehicle for the improvement of the delivery of drugs to the ocular surface: Application to cyclosporine A. Int J Pharm 2001; 224: 116-59.

8). Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63: 125-32.