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Abstract 

Alzheimer’s disease (AD) is associated with various neurodegenerative alterations and inflammation thought to play a major role in its 

pathogenesis. The Mammalian stress activated protein kinase (SAPK),  p38 mitogen-activated protein kinases (MAPKs), a family of 

serine/threonine protein kinases, activated in response to wide range of cellular stresses as well as in response to inflammatory 

mediators. A large body of evidences indicates that p38MAPK activity is critical for normal immune and inflammatory response. 

Moreover, the p38 MAPK pathway is considered to be a key regulator of various inflammatory pathways which are activated during 

normal aging and AD therapy. The p38MAPK pathway which is a key regulator of pro-inflammatory cytokines biosynthesis at the 

transcriptional and translational levels, which makes different components of this pathway, a potential targets for the treatment of 

autoimmune and inflammatory diseases.  Furthermore, p38 MAPK is over expressed in AD and have been linked to Aβ deposition and 

Tau tangle formation. Favourable modulator of  p38 MAPK found to beneficial in a variety of experimental models of AD, further 

implicating p38 MAPK in AD pathogenesis. In this review, we provide an overview on p38 MAPK and its implication in the 

pathogenesis of Alzheimer’s diseases. 
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Introduction 

Alzheimer’s diseases (AD) is an age related irreversible, 

progressive neurodegenerative disorder characterized by 

amyloid beta deposition and Tau tangle formation and inability 

to form new memories and access existing ones, due to 

neuronal cell death in the hippocampus and frontal cortex 

[1,2]. Extensive evidences suggests that oxidative stress and 

neuroinflammation are the earlier events in AD pathology 

[3,4]. Moreover, oxidative stress and neuroinflammatory 

events have been linked to Aβ deposition and Tau tangle 

formation [5]. Furthermore, during aging energy failure, 

oxidative stress and early increase in inflammatory mediators 

provides the basis for persistent stress to the neurons 

contributes to impaired synaptic functions, cognitive decline 

and neuronal death [6]. Although the neuropathological 

features of AD have been well defined, the underlying 

mechanisms responsible for the pathogenic processes have not 

been clearly delineated. This lack of understanding of the 

fundamental processes that are responsible for the 

neurodegeneration in AD likely is the reason there are no 

effective treatments to prevent the onset progression of the 

disease. However, research advances over the past several 

years have begun to provide some insight into the molecular 

mechanisms of AD. One particularly important area of 

investigation is the contribution of aberrant cell signaling 

events to the pathogenic process. For example, recent findings 

have provided strong evidence that the p38 mitogen activated 

protein (MAP) kinase signaling cascade is one signaling  
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pathway that overactivated in AD. Advances in molecular 

biology have led us to understand the molecular mechanisms 

involved in mediating stress response and subsequent neuronal 

death. Recently, it has been reported that stress activated 

protein kinases plays a  major role in degeneration of neurons 

in AD pathology. Mainly, two SAPK’s such as JNK and p38 

MAPK have been implicated in tau hyperphosphorylation, 

amyloid beta deposition and in progression of inflammation 

that are being actively involved in the pathogenesis of AD [7-

10]  and may be attractive targets for neurodegenerative 

diseases [11,12]. In this review, we mainly focused on p38 

mitogen activated protein kinase (MAPK) pathway, a major 

proinflammatory signal transduction pathway activated by 

various extracellular stimulation such as growth factors, 

oxidative stress, ultraviolet and   cytokines, are hyperactivated 

in human AD brain [13-15]. In vitro and In vivo studies have 

been demonstrated that upon activation, p38 MAPK cascade 

leading to cause neuronal death through various pathways in 

brain including, activation of  microglia/astroglia in the 

production of inflammatory mediators such as IL-1β, TNF-α, 

increase expression of COX/LOX and iNOS [16,17]. 

Oxidative/nitrosative stress and excitotoxicity which also 

contribute to phosphorylate p38 MAPK [15,18,19]. However, 

extracellular accumulation of Aβ  [7,8,10,20,21] and 

hyperphosphorylation of Tau protein [10,22-25] which are 

main hallmark of AD, are also activated via the 

phosphorylation of p38 MAPK in the hippocampal area of 

brain. Moreover, in Alzheimer’s diseases, p38 MAPK also 

leads to desensitization of the insulin receptor [26,27] and 

degeneration of the cholinergic neurons, further leads to 

memory and cognitive dysfunction [20]. Neuronal apoptosis 

process also mediated by p38 MAPK [28]. Phosphorylated 

form of p38 MAPK also activate  transcriptional factors such 

as MAPKAK2, PRAK, ATF-2, CHOP, NF-kB, AP-1, ATF-2 

which further increases the expression of iNOS and many 

proinflammatory cytokines [29,30], all these changes are 

nearly relevant to the pathogenesis of AD brain via activation 
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of p38 mitogen activated protein kinase and this 

hyperactivation of the p38 kinase and related signal pathway 

provides a new concept for discussing neuroinflammation in 

the aging human brain and may indicate a novel therapeutic 

target of the AD brain.  

Overview Of Mitogen activated protein kinase (MAPK) 

Cellular behavior in response to extracellular stimuli is 

mediated through intracellular signaling pathways such as the 

mitogen-activated protein (MAP) kinase pathways [31]. MAP 

kinases are members of discrete signaling cascades and serve 

as focal points in response to a variety of extracellular stimuli. 

Four distinct subgroups within the MAP kinase family have 

been described: (1) extracellular signal-regulated kinases 

(ERKs), (2) C-jun N-terminal or stress-activated protein 

kinases (JNK/SAPK), (3) ERK/ big MAP kinase-1 (BMK1), 

and (4) the p38 group of protein kinases. The focus of this 

review is to highlight the characteristics of the p38 kinases, 

components of this kinase cascade, activation of this pathway 

and the biological consequences of its activation [32]. 

Table 1: p38 MAPK nomenclature and localization 

Name    Alternate name    localization 

P38 α Sapk2b, csbp1 Ubiquitously 

 p38β Sapk2b, p38-2 Ubiquitously 

 p38 γ Sapk3 erk6 Skeletal muscle 

 p38δ Sapk4 Low in most tissues 

Table 2: Extracellular stimulants for the activation of p38 MAPK 

Growth factors   angiotensin ii, fgf, pdgf, vegf, tgf-β, igf 

Cytokines Tnf-α, il-1β, cd154, il-17 

Stress factors Lps, mechanical stress, uv radiation, osmotic stress 

Others Thrombin, high glucose, endothelin, no, estradiol, insulin, gpcr, tkr 

Table 3: Enzymes and substrates for the activation and inactivation of p38 MAPK 

Upstrem 

 activator 

Mapkkk ( mkkk or  mekk 1/4, raf, ask1, mlk3, tak1, tao-1/3 ) 

 mapkk( mkk3/4/6, mek1/2 )  

Inactivation enjymes Map ( mitogen activated protein kinase phosphatase) 

Serine/threonine protein phosphatsse type 2c ( pp2c ) 

Downstream substrate Mapkap2/mk2, mk3,  lsp1, creb,  elf-4e,  mnk1/2,   

Prak 

Transcriptional factors Atf-1/2/6, srf, sap1, chop, p53, c/ebpβ, mef2a/2c, mitf1, ddit3, elk1,  nfat,   hbp1,  ap-1, nf-

kb, stat1/3 

 

p38 MAP Kinase 

p38α (p38) was first isolated as a 38 kDa protein and is known 

to be rapidly tyrosine phosphorylated in response to LPS 

stimulation [33]. p38 cDNA was also cloned as a molecule that 

binds puridinyl imidazole derivatives which are known to 

inhibit biosynthesis of inflammatory cytokines such as 

interleukin-1 (IL-1) and tumor-necrosis factor (TNF) in LPS 

stimulated monocytes [34]. To date, four splice variants of the 

p38 family have been identified: p38α, p38β [35,36], p38γ 

[37,38], and p38δ (SAPK4) [39]. Of these, p38α and p38β are 

ubiquitously expressed while p38γ and p38δ are differentially 

expressed depending on tissue type. All p38 kinases can be 

categorised by a Thr-Gly-Tyr (TGY) dual phosphorylation 

motif [40]. Sequence comparisons have revealed that each p38 

isoform shares~60% identity within the p38 group but only 40-

45% to the other three MAP kinase family members [41].       

 

Localization of p38 MAPK in Brain 

Despite an abundance of data concerning p38 activation and 

function in peripheral tissues, the role of p38 in the brain is 

poorly understood. This is surprising while considering the fact 

that p38 is more highly expressed in brain than in peripheral 

tissues [35,39]. Only the p38α and p38β isoforms are expressed 

in the brain, with high levels of protein in most major brain 

regions, including cerebral cortex, hippocampus, cerebellum, 

and several brainstem nuclei [29]. Detected mainly in neurons, 

p38α is found in the nucleus, dendrites, and in cytoplasmic 

regions of the cell body. Both neurons and glia express p38β, 

with a pronounced nuclear location. The α and β isoforms of 

p38 are especially enriched in hippocampus, the brain region 

predominantly involved in learning and memory. Further, they 

are heavily expressed in pyramidal neurons of CA1 and CA3 

regions of hippocampus as well as in granule cells of the 

dentate gyrus [29,42]. Unlike p38α, p38β is detected in glial 

cells of the CA1 region also. In addition to prominent mRNA 

and protein levels, p38 also exhibits a high basal activity in 

brain [29,43], which suggest that the p38 pathway may play a 

role in normal neuronal function in addition to its role as an 

SAPK. Unlike JNK, whose function(s) are preferentially 

related to the control of apoptosis, p38 in the brain is involved 

not only in apoptosis, but also in aspects of neuronal 

differentiation, synaptic function and neuronal plasticity. 

Additionally, the p38 pathway is active during the induction of 
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long-term depression (LTD), a form of plasticity that is the 

functional inverse of LTP [44](Pei et al., 2001) and is involved 

in associative learning [45-47]

Fig-1 Biological functions of p38 MAPK 

Implication Of P38 Mapk In Alzheimer’s 

Diseases At Various States 

p38 MAPK Activation In Tau Hyperphosphorylation 

 

p38 has been demonstrated in vitro to phosphorylate tau on 

residues known to be phosphorylated in NFTs extracted from 

AD brains [25,48-50]. However, many other kinases, such as 

glycogen synthase kinase (GSK)-3β and extracellular signal-

regulated kinase (ERK)-2, have also been implicated as tau 

kinases, with different kinases demonstrating different 

preferences for certain sites [50]. Many of these kinases, 

including p38, have been demonstrated to phosphorylate tau 

when co-transfected with tau into cells, with GSK-3β 

demonstrating the best activity [51,52]. Although encouraging, 

the extrapolation of these data to AD is limited by caveats 

around overexpression and the use of non-neuronal cells. 

Therefore, current knowledge does not indicate the best target 

for intervention in tau phosphorylation in vivo, and further 

elucidation in this area is required. Additionally, it is not 

known if inhibition of any single kinase will have an impact on 

NFT formation. Although p38 has been implicated in tau 

phosphorylation in vitro and is associated in activated form 

with NFTs in AD in situ, there is currently no evidence that 

p38 phosphorylates tau in vivo. The activation of p38 has been 

demonstrated concurrently in conjunction with tau 

phosphorylation in the brains of rats implanted with IL-1-

impregnated pellets; however, these results remain correlative 

[13,53]. Recently, p38 activation has been demonstrated in a 

murine amyloidogenic model of AD in which mutated APP is 

overexpressed, and activation correlated with plaque burden 

and tau phosphorylation in the brains of these mice [8]. 

Assessing a p38 inhibitor in such a model may elucidate the 

role of p38 in tau phosphorylation and plaque formation in 

vivo. However, it is important to keep in mind that although 

these mice appear to show some degree of tau 

hyperphosphorylation, they do not develop NFTs. Thus, the 

implications of decreasing tau phosphorylation on NFT 

formation for any therapeutic approach cannot be assessed in 

this model. Other transgenic mice, which overexpress tau alone 

or tau and APP, have been reported to form tangle-like 

structures and may therefore be useful tools for assessing 

potential therapeutics on NFT formation in vivo [54-56]. 

However, to date, the activation of kinases in these models has 

not yet been characterized.  

 

p38 MAPK activation In Amyloid-beta 

The in vitro effect of Aß on p38 in neurons is also 

controversial with a debate on whether Aß activates p38 in 

neurons. One research group has reported that Aß activates p38 

in N2 neuroblastoma cells [7], while two other groups have not 

reported any such effect [57,58]. The recent finding that p38 is 

activated in double transgenic mice expressing AßPP (K670N/ 

M671L) and PS1(P264L) [59], as determined by 

immunobloting, has shown that Aß activates p38 in vivo. 

However, due to the lack of concurrent immunocytochemistry 

data, it is not clear whether this is microglial or neuronal in 

origin. Neuronal accumulation of Aβ has been implicated as a 

cause of the neuronal loss that occurs in AD while previous 

studies have shown that Aβ is cytotoxic to neurons, at least in 

cell culture. The mechanisms and signaling pathways involved 

are just beginning to be unraveled. It has been reported that Aβ 

induces the activation of p38 in a concentration-dependent 

manner in both M17 human neuroblastoma cells and primary 

cortical neurons. Since Aβ is present at up to micromolar 

concentration with the development of amyloidal deposits, 

these findings suggest that the chronic exposure to high Aβ 

levels may also be responsible for the abnormal activation of 

p38 in AD brain [60,61]. Some studies have demonstrated that 

inhibition of the p38 pathway either by overexpressing the 

dominant negative p38 or by specific pharmacological 

inhibitor such as SB203580 results in decreased Aβ-mediated 

cytotoxicity indicating an important role for p38 in the 

toxication of Aβ. However, since overexpression of dominant 

negative p38 or application of SB203580 does not completely 

block Aβ-induced neuronal death, it is likely that p38 regulates 

neuronal death in concert with other signaling transduction 

pathways. In this regard, previous studies demonstrate that a 

related pathway, namely the JNK pathway, is also activated in 

cultured neuronal cells after exposure to Aβ  and that inhibition 

of JNK also partially attenuates Aβ-induced cytotoxicity 

[57,58,62,63]. Therefore, it is conceivable that both the JNK 

and p38 pathways work synergistically in mediating Aβ-

induced neuronal death. In support of such a concept, another 

reports demonstrated a nearly complete overlap between 

phospho-JNK and phospho-p38 in severe AD cases implying 
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that JNK and p38 are both activated by the same signal and, as 

such, work synergistically in vivo [60,61]. It will now be of 

great interest to establish the mechanism by which Aβ induces 

the activation of p38. In this regard, since Aβ appears to bind 

to the surface of neurons through multiple receptors, and one 

or more of them may be involved in Aβ-induced p38 

activation, it is anticipated that the different receptors involved 

may lead to distinct responses. For example, the receptor for 

advanced glycation end products (RAGE), which interacts with 

Aβ may be a good candidate that is specifically involved in 

mediating Aβ-induced oxidative stress through the p38 

pathway [64]. Also it is notable that Aβ binding of AβPP 

induces AβPP dimerization which, in turn, activates 

ASK1/MKK6/p38 cascade. It will also be important to 

characterize the mechanisms by which p38 activation leads to 

cell death. One possible target is TNF-α, because the 

expression of TNF-α is regulated by p38 [65]. More relevantly, 

the levels of both TNF-α are elevated in AD [66,67]. 

Therefore, the characterization of specific receptors as well as 

the downstream targets involved in Aβ-mediated events will 

not only help to better understand the nature of Aβ action but 

also identify specific targets for interrupting the pathogenesis 

process.

 

 
 

Fig- Neuronal death via activation of p38 MAPK 

 

 

p38 MAPK activation In Long Term Potentiation  

 

p38 MAPK has been reported to have higher expression in the 

hippocampus [29,68-70] and activation of p38 MAPK during 

stress conditions is reported to cause both short term and long 

term synaptic depression (LTD) [46,47,71-73]. But inhibition 

of p38 MAPK activity blocks the induction of LTD without 

affecting induction of LTP [42,46,70,74-77]. It has further 

been shown that there is complete absence or little formation of 

LTP induced by high frequency stimulation, whereas the low 

frequency stimulation enhances the formation of LTD in the 

hippocampus of STZ-induced diabetic rats [78-81]. 

 

p38 MAPK activation In Neuroinflammation 

 

The activation of the p38 pathway plays essential role in the 

production of proinflammatory cytokines which has an integral 

role in Alzheimer’s disease development and may precede 

plaque and tangle formation [14,82]. Inflammatory 

components related to AD neuroinflammation include brain 

cells such as microglia and astrocytes and p38 MAPK is 

involved in the activation of microglia and astroglia cells 

known to generate beta-amyloidal protein (Aβ) - one of the 

main pathologic features of AD [13,83]. Causative linkages 

between MAPK pathway activation and proinflammatory 

cytokine production by glia are based mainly on cell culture 

studies [18]. Phosphorylated p38 MAPK immunoreactivity 

was detected in microglia cells and    co-localization with 

astrocytes in response to injury, illness, ageing or ischemia that 

begins a cascade of events which can be characterized as an 

inflammatory process [29,84]. In AD, the release of 

proinflammatory cytokines and interleukins via activation of 

p38 MAPK is stimulated in activated microglia and astrocytes 

and these cells are characteristically found near damaged 

neurons and plaques [82,85,86]. Glia cells normally mediate 

the innate immune response in CNS, but when activated, they 

produce inflammatory mediators like cytokine S100β, IL-1, IL-

6, TNF-α, prostaglandins and leukotriens, which increase the 

Aβ activation. Aβ, in turn, increases the levels of these 

cytokines which lead to plaque and tangle formation. The 

cytokines can simultaneously activate p38 MAPK to induce the 

generation of other mediators like nitric oxide (NO) toxic to 

neurons in AD brain [73,87-89]. It has also been demonstrated 

in in vitro models of inflammation that inducible COX-2 and 

inducible nitric oxide synthase expression requires the 

activation of p38 MAPK signaling pathway. A large number of 

research reports have provided evidences that support the 

involvement of inflammatory process as one of the key 

cascades in the development and worsening of Alzheimer’s 

disease in which p38 MAPK signaling pathway has been fully 

implicated [16,19].  

p38 MAPK activation In Oxidative Stress and 

Excitotoxicity 

 

Oxidative stress is the key feature for neuron cell death in AD 

[90](Butterfield et al., 2006) and p38 MAPK is highly sensitive 

to oxidative stress [91,92]. The oxidative stress induces several 

other key events like protein aggregation [93,94], 

mitochondrial dysfunction [95] and glutamate excitotoxicity 

[43], all of which combinedly contribute to the death of 

neurons due to imbalance between free radical production and 

degradation [83]. In AD, mitochondrial dysfunction plays a 
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potential role in cell death in which disturbance of energy 

metabolism leads to glutamate excitotoxicity [96,97]. The 

disturbed energy metabolism also enhances oxidative stress via 

excessive Ca
++

 influx in the cell leading to free radical 

production through p38 MAPK activation [15,16,98,99]. 

Moreover, p38 activation has been further 

demonstrated to be involved in cell death mechanisms in 

neuronal models. Treatment of neuronal cultures with arsenite, 

lipopolysaccharide, glutamate, amyloidal beta, IL-1, TNF- α, 

ceramide and sulfidryl oxidizing agent results in p38 MAPK 

activation [38,100,101]. In AD brain, neurons become 

particularly sensitive to attack by free radicals. Various free 

radicals like reactive oxygen species (ROS) and reactive 

nitrogen species (RNS) such as peroxynitirte lead to lipid 

peroxidation, protein oxidation  and DNA damages 

[102,103,104]. 
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Abbreviations 

Ad Alzheimer’s disease 

Aβ Amyloid beta 

Ache Acetylcholinesterase 

Als Amyotrophic lateral sclerosis 

Ampa Α-amino-3-hydroxy-5-methyl-4-isoxazole 

propionate 

App Amyloid precursor protein 

Ap-1 Activator protein-1 

Ask1 Apoptosis-signal regulating kinase 1 

Atf Activating transcription factor 

Atp Adenosine triphosphate 

Bmk1 Big mapk1  

Csaids Cytokine suppressive anti-inflammatory drugs 

Chat Cholineacetyltransferase 

Chop Caat enhancer binding protein homologous 

protein 

Cox Cyclooxygenase 

Creb Camp response element binding protein 

Csf Cerebrospinal fluid 

Cns Central nervous system 

Cpcsea Committee for the purpose of control and 

supervision of experiments on animals 

Ddit3 Dna damage age inducible transcript3e 

Elf-4e Initiation factor-4e 

Elk1 Ets like gene 1 

Erks Extracellular signal-regulated kinases 

Fad Familial alzheimer’s disease 

Fgf Fibroblast growth factor 

Gaba Gamma amino butyric acid 

Gsk Glycogen synthase kinase 

Gsh Glutathione 

Hsp Heat shock protein 

Hmg-14 High morbidity groups  

H2b Histone 2b 

Il-1 Interleukin-1 

Ial Initial acquisition latency 

Iaec Institutional animal ethics commitee 

Inos Inducible nitric oxide synthase 

Igf Insulin like growth factor 

Icam Intracellular adhesion molecule 

Icv Intracerebroventricular 

Jnk C-jun n-terminal kinase 

Lox Lipoxygenase 

Lps Lipopolysaccharide 

Lts    leukotrienes 

Ltp    long term potentiation 

Ltd    long term depression 

Madd Mitogen activated kinase activating death domain 

protein 

Mapk Mitogen-activated protein kinase 

Mapkk Mitogen-activated protein kinase kinase 

Mda Malondialdehyde 

Mhc-ii Major histocompatibility complex-ii 

Mk2 Map kinase-activated protein kinase 2 or mk2 

Mef-2c Myocite enhanced factor 2c 

Mekk Mapk-extracellular signal-regulated kinase or 

mkkk  

Mlk Mixed lineage kinases 

Mkk Map kinase kinase 

Mkkk Map kinase kinase kinase or mekk 

Mkp Map kinase phosphatase 

Mnk Mapk signal integrating protein kinase 

Mrna Messanger ribonucleic acid  

Msk Mitogen and stress activated  

Nfat Nuclear factor of activated t-cells 

Nf-κb Nuclear factor kappa b  

Nhe Na+ - h+ exchanger isoform-1 

Nft Neuro fibrillary tangle  

Nmda N-methyl-d-aspartate 

Phf Paired helical filament 

Prak P38 regulating activated kinase 

Pd Parkinsonian diseases 

Pdgf Platelet derived growth factor 

Pla2 Phospholipase a2 

Pgs Prostaglandins 

Ps1 Presenelin1 

Ros Reactive oxygen species  

Rns Reactive nitrogen species 

Rtl Retention transfer latency 

Sad Sporadic alzheimer’s disease 

Sap1 Srf accessory protein 

Sapk Stress activated protein kinase  

Stat Signal transducer and activation of transcription 

1a  

Stz Streptozotocin 

Tak-1 Transforming growth factor–beta activated protein 

kinase 1 

Tab1 Tak1–binding protein 

Tao Thousand and one kinase 

Thr Threonine  

Tgf Transforming growth factor 

Tlr Toll like receptor 

Tyr Tyrosine   

Tnf Tumor necrosis factor 

Tnfr Tumor necrosis factor receptor 

Traf Tumor necrosis factor receptor-associated factor 

Vegf Vascular endothelial growth factor 
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