
## IJPPR (2016), Vol. 7, Issue 3



International Journal of Pharma Professional's Research



## FORMULATION AND EVALUATION OF KETOROLAC TROMETHAMINE MICROPARTICLES FOR OCULAR DELIVERY

Shekhar Singh<sup>\*1</sup>, Dr. Anil Middha<sup>1</sup>, Dr. Randhir Singh Dahiya<sup>2</sup>

1. School of Pharmacy, OPJS University, Churu, Rajasthan.

2. College of Pharmacy, MMU, Ambala, Haryana.

**ABSTRACT**: The objective of the present work was to formulate Key words: Ketorolac tromethamine, microparticle, and evaluate microparticles of Ketorolac tromethamine and produced sustained drug delivery for ocular delivery. In this 9 **Ocular Delivery**  $batches(A_1-C_3)$  of Ketorolac tromethamine microparticle was prepared with chitosan, Sodium Tri-polyphosphate and other **Correspondence to Author:** ingredients by Ionotropic gelation technique. The prepared microparticles were evaluated for different parameters i.e % Drug Shekhar Singh yield, % Drug entrapment, Surface morphology, Zeta potential **Research Scholar** and in-vitro drug release for 24hrs in phosphate buffer 7.4 and School of Pharmacy, simulated tear fluid. The best batch was performed stability **OPJS** University, Churu, Rajasthan studies for 6 months. The research concluded that Ketorolac tromethamine microparticles could alternative be for E-mail: shekharsingh47@gmail.com conventional dosage form.

## **INTRODUCTION:**

Microparticles are a type of drug delivery systems in which the particle size ranges from 1 micron to few mm. This microencapsulation technology allows protection of drug from the environment, stabilization of sensitive drug substances, elimination of incompatibilities, or masking of unpleasant taste. Hence, microparticles play an important role as drug delivery systems aiming at improved bioavailability of conventional drugs and minimizing side effects [1].

### **Material and Method:**

Ketorolac tromethamine was acquired as a gift sample from Knox life sciences, Baddi, H.P. *International Journal of Pharma Professional's Research* 

## Formulation design:

Ketorolac tromethamine studied was for physicochemical characteristics. Microparticles of Ketorolac tromethamine were produced, by employing technology. Various ingredients were selected. for Ketorolac tromethamine, Microparticles formulation design of as represented in the table no 1.

#### **Preparation of Drug loaded Microparticles:**

Ionotropic gelation process: Ketorolac tromethamine loaded Microparticles were prepared using ionotropic gelation method. Drug and polymer, in different proportions,



**Research** Article

were accurately weighed. The chosen polymer was dissolved in 100 ml of aqueous acetic acid solution while the drug was dissolved in the solution of sodium tri-polyphosphate at room temperature. Chitosan solution was added drop wise into the drug solution containing Na-TPP (Sodium Tri-polyphosphate), in the presence of 1.5% (v/v) span 80, under continuous stirring at 2000 rpm (using mechanical stirrer). The prepared suspension was centrifuged at 12000 rpm for 15 min. Supernatant was removed and the sediment was freeze dried for 48 hours. The obtained particles were kept in dehydrated conditions for further studies[2].

## **Evaluation of Microparticles:**

The Microparticles produced with each drug i.e. Ketorolac tromethamine, was evaluated for various parameters i.e. % yield, entrapment efficiency, determination of particle size & Zeta potential, surface morphology, in-vitro drug release, release kinetics and stability studies.

### Percentage yield (% yield)

The yield values were calculated as the weight of the microparticles recovered from each batch divided by total weight of drug and polymer used in the preparation of the particular batch[3].

### **Determination of drug entrapment efficiency**

The formulations were dissolved in a minimum quantity of methanol individually and centrifuged at 1,500 rpm for 20 minutes. The sediments were separated and upper layers were filtered, suitably diluted and analyzed spectrophotometrically at respective wavelengths. Each experiment was repeated in triplicate. Percentage drug entrapment, for each class of Microparticles, was determined by the following formula:

International Journal of Pharma Professional's Research

#### Particle size and zeta-potential

The mean particle size of drug-loaded Microparticles and zeta potential (for Microparticles obtained with each drug) were determined by a **Malvern Zetasizer nano zs** (Malvern instrument ltd., Worcestershire, UK).

## Surface morphology

Surface morphology was determined by scanning electron microscopy of each class of Microparticles. It determined whether particles had a uniform shapes or not and whether they were uniformly/ununiformly distributed. It also confirmed the obtained particle size in each case.[4]

# In-vitro drug release from Drug-loaded Microparticles:

Drug-loaded Microparticles obtained with each drug were suspended in pH 7.4 phosphate buffer in a glass vial which was placed in a mechanical shaking bath (100 cycles /min) at the temperature adjusted to 37°C. At selected time intervals sample was removed and replaced with fresh buffer medium. Each withdrawn sample was then centrifuged at 15000 rpm (Ketorolac tromethamine microparticles) and supernatant was analyzed using UV spectrophotometry.[5]

## Accelerated Stability studies:

The selected (optimized) formulation, in each case, was packed in amber-colored bottles which were tightly plugged with cotton and capped. These were then stored at  $400\pm20C/75\%\pm5\%$  RH for 6 months and evaluated, for its physical appearance & drug contents, at specified intervals of time.[6,7]

### **Result and Discussion:**

| Formulation<br>Code | Drug<br>(mg) | Polymer<br>(Chitosan)<br>(mg) | Aqueous acetic acid<br>solution, 100 ml (%) | Sodium tri-<br>polyphosphate<br>mg / 100 ml | Span 80<br>(1.5 % μl) |
|---------------------|--------------|-------------------------------|---------------------------------------------|---------------------------------------------|-----------------------|
| A <sub>1</sub>      | 100          | 100                           | 1                                           | 100                                         | 100                   |
| A <sub>2</sub>      | 100          | 200                           | 1                                           | 100                                         | 100                   |
| A <sub>3</sub>      | 100          | 300                           | 1                                           | 100                                         | 100                   |
| B1                  | 100          | 100                           | 1                                           | 200                                         | 100                   |
| B <sub>2</sub>      | 100          | 200                           | 1                                           | 200                                         | 100                   |
| B3                  | 100          | 300                           | 1                                           | 200                                         | 100                   |
| C1                  | 100          | 100                           | 1                                           | 300                                         | 100                   |
| C <sub>2</sub>      | 100          | 200                           | 1                                           | 300                                         | 100                   |
| C <sub>3</sub>      | 100          | 300                           | 1                                           | 300                                         | 100                   |

Table 1: Formulation design of Microparticles of Ketorolac tromethamine:

### Percentage yield:

The maximum percentage yield was found to be 67.42% with batch  $C_3$  (Ketorolac

tromethamine), while minimum of 28.16% with batch A1 (Ketorolac tromethamine).

Table 2: Percentage yield of Ketorolac tromethamine microparticles (batches A1 - C3)

| Microparticulate<br>Batches | Total amount of<br>Ingredient (mg) | Practical<br>yield(mg) | Percentage yield<br>(%) |
|-----------------------------|------------------------------------|------------------------|-------------------------|
| $\mathbf{A}_{1}$            | 600                                | 169                    | 28.16                   |
| A2                          | 800                                | 287                    | 35.87                   |
| $A_3$                       | 1000                               | 658                    | 65.8                    |
| $\mathbf{B}_1$              | 800                                | 286                    | 35.75                   |
| <b>B</b> <sub>2</sub>       | 1000                               | 539                    | 53.9                    |
| <b>B</b> <sub>3</sub>       | 1200                               | 682                    | 56.83                   |
| C <sub>1</sub>              | 1000                               | 411                    | 41.10                   |
| C2                          | 1200                               | 593                    | 49.41                   |
| C <sub>3</sub>              | 1400                               | 944                    | 67.42                   |

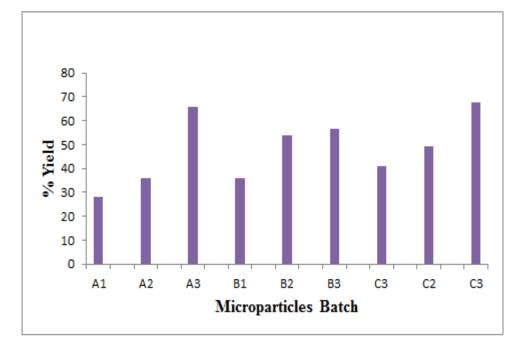



Fig. 1: Percentage (%) yield of Ketorolac tromethamine microparticles (batches A1-C3)

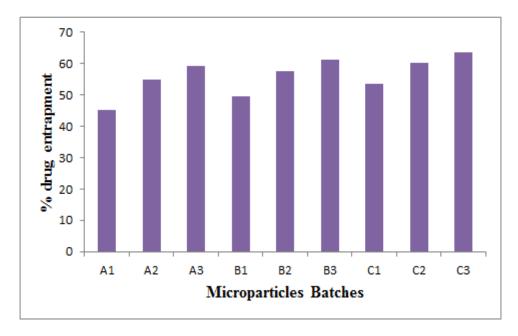
## Drug entrapment efficiency:

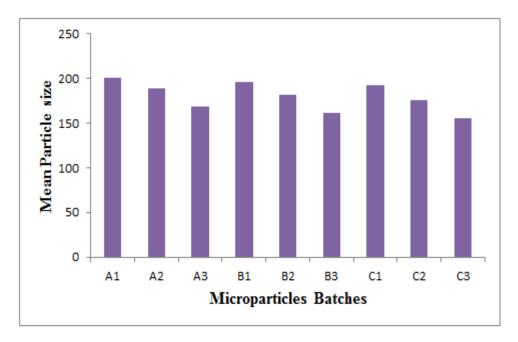
The % drug entrapment of Ketorolac tromethamine microparticles (batches A1-C3)

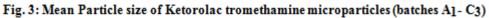
was determined. It ranged between (45.26%-63.49%) respectively.

Table 3: Percentage drug entrapment of Ketorolac tromethamine microparticles (batches A1 - C3)

| Microparticulate<br>Batches | % drug content |
|-----------------------------|----------------|
| A <sub>1</sub>              | 45.26          |
| A <sub>2</sub>              | 54.78          |
| A <sub>3</sub>              | 59.27          |
| B <sub>1</sub>              | 49.49          |
| B <sub>2</sub>              | 57.65          |
| B <sub>3</sub>              | 61.14          |
| C1                          | 53.68          |
| C <sub>2</sub>              | 60.28          |
| C <sub>3</sub>              | 63.49          |





Fig. 2: Percentage drug entrapment of Ketorolac tromethamine microparticles batches (A1-C3)


## Particle size analysis:

The analysis was performed for all nine batches prepared with Ketorolac tromethamine. The

mean diameters of particles for all batches were found in the range of 152- 205 nm.

| S. No | Microparticulate Batches | Mean<br>particle<br>size (µm) |
|-------|--------------------------|-------------------------------|
| 1     | A1                       | 201                           |
| 2     | A <sub>2</sub>           | 189                           |
| 3     | A3                       | 168                           |
| 4     | B1                       | 196                           |
| 5     | B <sub>2</sub>           | 182                           |
| 6     | B3                       | 161                           |
| 7     | C1                       | 192                           |
| 8     | C <sub>2</sub>           | 176                           |
| 9     | C <sub>3</sub>           | 155                           |





**Zeta potential:** The zeta potential of Ketorolac tromethamine (batch A1-C3) was determined. It

ranged between [(-9.50 & -17.64)])] mV respectively.

| S. No | Microparticulate Batches | Zeta Potential Mean (mV) |
|-------|--------------------------|--------------------------|
| 1     | <b>A</b> <sub>1</sub>    | -10.28                   |
| 2     | $\mathbf{A}_2$           | -13.20                   |
| 3     | $\mathbf{A}_3$           | -12.60                   |
| 4     | <b>B</b> 1               | -14.60                   |
| 5     | $\mathbf{B}_2$           | -15.40                   |
| 6     | <b>B</b> <sub>3</sub>    | -16.40                   |
| 7     | <b>C</b> 1               | -13.80                   |
| 8     | <b>C</b> <sub>2</sub>    | -9.50                    |
| 9     | <b>C</b> <sub>3</sub>    | -20.50                   |

|               |                  |                |                | ···· piiospii | ate builer.           |                |            |                |                       |
|---------------|------------------|----------------|----------------|---------------|-----------------------|----------------|------------|----------------|-----------------------|
| Time<br>(hr.) | $\mathbf{A}_{1}$ | A <sub>2</sub> | A <sub>3</sub> | <b>B</b> 1    | <b>B</b> <sub>2</sub> | B <sub>3</sub> | <b>C</b> 1 | C <sub>2</sub> | <b>C</b> <sub>3</sub> |
| 0             | 0                | 0              | 0              | 0             | 0                     | 0              | 0          | 0              | 0                     |
| 2             | 20.325           | 19.726         | 18.757         | 16.226        | 15.694                | 14.548         | 12.206     | 11.548         | 9.657                 |
| 4             | 31.254           | 30.251         | 29.636         | 28.292        | 27.276                | 26.364         | 24.424     | 24.556         | 22.057                |
| 6             | 50.365           | 49.989         | 48.425         | 46.645        | 45.329                | 44.486         | 42.901     | 41.414         | 39.936                |
| 8             | 66.258           | 65.223         | 64.622         | 62.056        | 61.773                | 60.056         | 58.306     | 57.205         | 56.258                |
| 10            | 70.698           | 69.059         | 68.823         | 66.954        | 65.248                | 64.975         | 62.284     | 61.601         | 59.412                |
| 12            | 75.287           | 74.854         | 73.256         | 70.802        | 70.062                | 69.243         | 67.381     | 66.323         | 65.247                |
| 14            | 78.129           | 77.325         | 76.306         | 75.123        | 73.602                | 72.257         | 71.218     | 70.902         | 69.021                |
| 16            | 81.034           | 80.212         | 79.421         | 78.374        | 76.145                | 75.549         | 72.594     | 73.612         | 72.258                |
| 18            | 85.657           | 84.751         | 83.369         | 82.606        | 81.243                | 80.263         | 79.963     | 78.856         | 76.158                |
| 20            | 88.256           | 87.658         | 86.167         | 85.829        | 84.222                | 83.051         | 82.456     | 81.437         | 80.317                |
| 22            | 93.648           | 92.587         | 91.254         | 90.333        | 89.372                | 88.347         | 87.202     | 86.159         | 86.329                |
| 24            | 97.682           | 96.348         | 95.633         | 94.502        | 93.102                | 92.385         | 91.057     | 91.254         | 91.241                |

 Table 6: In -vitro comparative release study of Ketorolac tromethamine microparticles (batches A1-C3) in pH

 7.4 phosphate buffer:

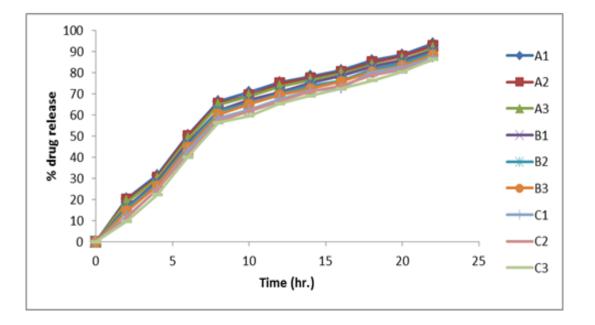



Fig. 4: Comparative % drug release of Ketorolac tromethamine microparticles (batches Al- C3) in pH 7.4 phosphate buffer

| Time<br>(hr.) | A1     | A2     | A3     | <b>B1</b> | <b>B2</b> | <b>B3</b> | Cl     | C2     | C3     |
|---------------|--------|--------|--------|-----------|-----------|-----------|--------|--------|--------|
| 0             | 0      | 0      | 0      | 0         | 0         | 0         | 0      | 0      | 0      |
| 2             | 19.321 | 18.19  | 16.824 | 14.02     | 13.562    | 12.348    | 11.353 | 10.348 | 8.624  |
| 4             | 30.658 | 29.681 | 28.174 | 26.379    | 25.317    | 24.367    | 23.648 | 22.154 | 21.348 |
| 6             | 49.257 | 48.325 | 47.502 | 45.364    | 44.258    | 43.601    | 41.279 | 40.387 | 38.745 |
| 8             | 65.124 | 64.902 | 63.856 | 61.279    | 60.321    | 59.941    | 57.314 | 56.252 | 55.245 |
| 10            | 69.347 | 68.378 | 67.521 | 66.028    | 65.348    | 64.872    | 63.492 | 62.149 | 61.275 |
| 12            | 74.158 | 73.542 | 72.575 | 70.185    | 69.674    | 68.821    | 67.423 | 66.189 | 64.253 |
| 14            | 77.356 | 76.314 | 75.688 | 73.181    | 72.368    | 71.245    | 70.129 | 69.055 | 67.835 |
| 16            | 80.124 | 79.278 | 77.333 | 76.284    | 75.685    | 73.652    | 72.142 | 71.456 | 70.556 |
| 18            | 84.249 | 83.258 | 82.202 | 81.245    | 80.295    | 79.985    | 77.156 | 76.485 | 75.256 |
| 20            | 87.045 | 86.247 | 85.312 | 84.527    | 83.666    | 82.022    | 81.275 | 80.242 | 79.634 |
| 22            | 92.302 | 91.348 | 89.657 | 88.112    | 87.303    | 86.942    | 85.884 | 84.847 | 84.212 |
| 24            | 96.105 | 95.246 | 94.532 | 93.454    | 92.368    | 91.054    | 90.757 | 90.117 | 91.247 |

Table 4.25: In -vitro dissolution study of Ketorolac tromethamine microparticles batches (A1-C3) in simulated tear fluid:

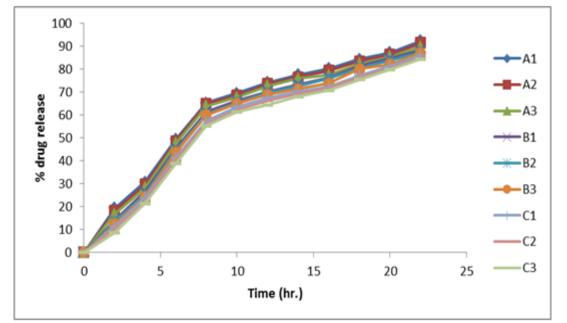



Fig. 5: Comparative % drug release of Ketorolac tromethamine microparticles (batches A1- C3) in simulated tear fluid.

| Time  | 0 days | 60 days | 120 days | 180 days            |
|-------|--------|---------|----------|---------------------|
| (hr.) |        |         |          |                     |
| 0     | 0      | 0       | 0        | 0                   |
| 2     | 19.321 | 19.201  | 19.031   | 18.589              |
| 4     | 30.658 | 30.328  | 30.214   | 30.045              |
| 6     | 49.257 | 49.167  | 49.087   | 48.854              |
| 8     | 65.124 | 65.034  | 64.982   | 64.852              |
| 10    | 69.347 | 69.127  | 68.898   | 68.733              |
| 12    | 74.158 | 74.038  | 73.857   | 73.543              |
| 14    | 77.356 | 77.126  | 76.998   | 76.882              |
| 16    | 80.124 | 80.004  | 79.788   | 79.55               |
| 18    | 84.249 | 84.029  | 83.674   | 83.432              |
| 20    | 87.045 | 87.015  | 86.632   | 86.459              |
| 22    | 92.302 | 92.122  | 91.878   | 91.662              |
| 24    | 96.105 | 96.095  | 95.747   | 95.548 <sub>/</sub> |

| Table 8: Stability | data of Ketorolac tromethamine | microparticle A | 1 batch in simulated tear fluid. |
|--------------------|--------------------------------|-----------------|----------------------------------|
|                    |                                |                 |                                  |

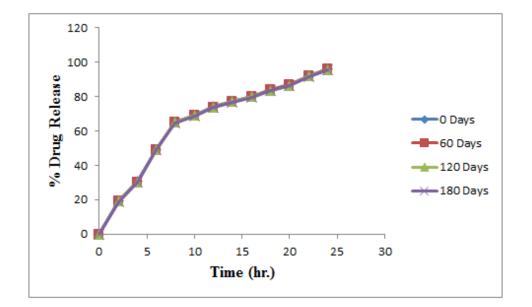



Fig. 5: Comparative release profile of Ketorolac tromethamine microparticles batch A1 on stability studies (n=3)

#### Conclusion

In the Present study the Ketorolac tromethamine microparticles were evaluated for different parameters i.e % Drug yield, % Drug entrapment, Surface morphology, Zeta potential and in-vitro drug release for 24hrs in phosphate buffer 7.4 and simulated tear fluid. The latter revealed that  $A_1$  batch from the nine formulations shows maximum sustained release (96.105%) in 24 hr. The  $A_1$  batch was performed for stability studies for 6 months. The research, reference characterized that Ketorolac tromethamine microparticles could be alternative than conventional dosage for sustained action in ocular delivery.

### **References:**

- Takale a.a., dr. Banerjee s.k., gadhave m.v., gaikwad d.d, Microparticles In Drug Delivery System: A Review, international journal of institutional pharmacy and life sciences 2(2): march-april 2012, page 349-359.
- Huang Yuan, Xu Xuefan, Xiang Qingyu, He Zhiyao, Liu Yuehua, Zhou Dan, (2010) "Crystalline drug aconitine-loaded poly (d,l-Lactide-co glycolide) nanoparticles preparation and in vitro release", The Pharmaceutical society of Japan, 130, 409-418.
- Patel Paresh N., Patel L. J, and Patel J. K. (2011) "Development and testing of novel Temoxifen citrate loaded chitosan nanoparticles using ionic gelation method" *Der Pharmacia Sinica*, 2(4), 17-25.
- 4. Das swarnali, Suresh k. Preeti. (2010)"Drug delivery to eye: Special reference to

nanoparticles", *International Journal of Drug* Delivery, **2**, **12-21**.

- Agnihotri M. Sagar, Vavia, R. Pradeep. (2009). "Diclofenac- loaded biopolymeric nanosuspensions for ophthalmic application". *Nanomedicine: nanotechnology, biology, and medicine,* 5, 90-95.
- Bhambere Deepak S; Deshmukh Narendra
   V; Doijad Rajendra C; Somapur Cand
   Goje Arjun; Patel Kareeshma S. (2010)
   "Colloidal drug delivery of biodegradable poly
   (lactide-coglycolide) (PLGA) injectable
   nanoparticles for anticancer drug" Int. J.
   Drug Dev. & Res., 2(4), 681-689.
- ICH Q1A (R) guidelines: "Stability testing of New Drug Substance and Product", (2003),1-18.